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Surface-wave scattering matrix for a shelf 

By JOHN W. MILES 
University of California, La Jollat 

(Received 31 May 1966 and in revised form 22 August 1966) 

The diffraction of gravity waves at  a discontinuity in depth is described by a 
scattering matrix that relates the asymptotic, plane-wave fields (each of which 
may contain waves travelling towards and away from the discontinuity) on the 
two sides of the discontinuity. Plane-wave and variational approximations for 
the elements of this scattering matrix are developed. These approximate results 
are tested by comparison with the more accurate results obtained by Newman 
for an infinite step. The plane-wave approximation to the magnitude of 
the transmission coefficient is within 5 %  of Newman’s result for all wave- 
lengths, but the corresponding approximation t o  the reflexion coefficient is 
satisfactory only for rather long wavelengths. The variational approximations 
to the complex transmission and reflexion coefficients agree with Newman’s 
results, within the accuracy with which his graphs can be read, for all wave- 
lengths. The variational approximations also are used to determine the 
effects of trapped modes on the resonant width of a shelf that terminates a t  
a vertical cliff. 

1. Introduction 
We consider the diffraction of gravity waves a t  a discontinuous change in 

depth (vertical step) between two horizontal bottoms and obtain some new results 
for obliquely incident waves and for a shelf of finite width. Our primary purpose, 
however, is to develop and illustrate a scattering-matrix formulation and a,n 
associated variational principle, due originally to Schwinger ( 1944), that have 
proved powerful and efficient in the treatment of acoustical (Miles 1946) a.nd 
electromagnetic (Marcuvitz 1951) scattering problems (the formulations of these 
scattering problems are in terms of equivalent circuits, which, in turn, can be 
represented by scattering matrices). The application of Schwinger’s variational 
technique to gravity-wave problems has been considered previously by Keller 
(1952), but his work has never been published (Prof. Keller informs me that the 
original manuscript has been lost). 

The shallow-water problem for a step was treated originally by Lamb (1932, 
8 176), who invoked basic continuity requirements to relate the disturbances a t  
large distances (compared with the depth) from the step. Bartholomeusz (1958) 
gave a more complete analysis and formulated the integral equation that governs 
the problem for arbitrary depths, but he solved this integral equation only in the 
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limiting case of long waves to obtain reflexion and transmission coefficients that 
are identical with those of Lamb.? Both Lamb and Bartholomeusz restricted 
their analyses to normally incident waves. Sretenskii (1950) has considered waves 
obliquely incident on an infinite step between deep and shallow bottoms, but his 
analysis is inconsistent (Newman 1965 a, b). Newman has considered waves 
normally incident on an infinite step and given numerical results for thereflexion 
and transmission coefficients over the complete range of wavelengths in which 
diffraction is significant (diffraction obviously cannot be significant if the depth 
is large compared with the wavelength on both sides of the step). Newman’s 
numerical results, which were based on the solution of as many as eighty simul- 
taneous equations on a digital computer, provide an excellent standard of com- 
parison for our more approximate variational calculations. 

The extension of the variational formulation to other configurations (e.g. 
scattering from obstacles) can be carried out more or less by analogy with com- 
parable wave-guide problems (Marcuvitz 1951). See, for example, the calculation 
of the resonant frequencies of a harbour that is coupled to the open sea through 
an aperture in a breakwater (Miles & Munk 1961). 

Being concerned primarily with illustrating the variational formulation, we do 
not offer comparisons with either laboratory or field observations. The com- 
parisons given by Newman suggest that the idealized model on which our calcula- 
tions are based is capable of providing results that are in fair agreement with 
observation. 

2. The boundary-value problem 
We consider small-amplitude, monochromatic, irrotational motion of an ideal 

liquid with an equilibrium free surface at  y = 0 over the stepped bottom sketched 
in figure 1 (h, > hl with no loss of generality). We follow Newman (196Su) in our 
initial formulation and notation except as noted; in particular, we begin by 
regarding the motion as two-dimensional, although we subsequently generalize 
to three-dimensional motion. We pose the time dependence eciUt and the complex 
velocity potential q5, such that the particle velocity is given by 

V = Re [e-iutVq5(x, y)], V2q5 = 0. (2.lu, b) 

The (linearized) free-surface and bottom conditions are 

a(b/ay+h’q5 = 0 ( K  = r y g ,  y = O),  ( 2 . 2 )  

and Llq5,Jay = 0 (y = hm), aq5,/ax = 0 (x = 0, h, < y < h2),  ( 2 . 3 a 7 b )  

where m = 1 ( 2 )  denotes the solution for x < ( > ) 0; ( 2 . 3  a) must be replaced by an 
appropriate finiteness condition in the limit of infinite depth for x > 0 (h, + 00). J 

Bartholomeusz, pointing to Lamb’s disregard of  the boundary condition on the 
vertical portion of the step, expressed surprise at  this agreement. In  fact, the explanation 
given by Lamb (in a footnote) appears to be perfectly sound; cf. Rayleigh’s (1945) more 
extensive discussion in connexion with similar approximations in acoustical diffraction 
problems. 

$ The boundary-value problem for the total domain is defined by (2.1)-(2.3). The sub- 
sequent subdivision of  the problem for the two domains, x > 0 and x < 0, requires the 
addition of the matching conditions across x = 0, (2.11) below. 

t 
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$@,!I; k) = e""y, 4, 
@(y, k) = 2*[h - K-l sin2 kh]-4 cos [k(h - y)], 
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A particular solution to (2.1)) (2.2) and (2.3a) for a domain of constant depth 

(2.4) 

(2 .5 )  

is given by 

and ktankh+K = 0. (2.6) 

The eigenvalue equation (2.6) has a single pair of imaginary roots, say +. k, = & i~ 
( K  > O ) ,  and an infinite, discrete set of real roots, say ks, s = 1,2,  ...; the cor- 
responding functions of (2.5) form a complete, orthonormal set for the interval 
y = (0 ,h )  with the end conditions (2.2) and ( 2 . 3 ~ ~ ) .  We append the subscript 
m = 1, 2 to h, $ and @ in the subsequent discussion with the implication that the 

////////,// 

/ 
/ 

5 4,=0 
49 = 0 

corresponding spectrum of k is defined by setting h = h, in (2.6); however, in 
order to avoid unwieldy subscripts, we omit the m subscript from the real eigen- 
values. We find it expedient to introduce special notation for the surface-wave 
modes, such that 

x,,(y) = $,(y, k,) = 2*[h, + K-l sinh2k-,h,]-* cosh [K,(h, - y)] (2.7) 

and K, tanh K m h m  = K .  (2 .8 )  

We note that K > K for finite h ( K ~  = KO in Newman's formulation). The spectrum 
for h, = cc, goes over to  K ,  = K and 0 < k < 03, with? 

x2(y) = (2K)&e-"Y, $, (y ,k)  = (2 /~)&(~2+K2)-&(Ksinky-  kcosky)  (h, = 03). 

(2.9a, b )  

We construct complete solutions for the individual domains in the form 

$,&,y) = s g n x [ ( A , e - ~ K ~ ~ ~ ~ + B , e ~ K ~ ~ ~ ~ ) ~ , ( y ) + ~  C,,(k)e-klzl$,(y, k)], (2.10) 

where the summations are over the positive-real eigenvalues (if h, = co the sum- 
mation for 4, is replaced by integration from k = 0 to k = 00). We must determine 
A,, B, and Q!,(k) subject to the matching conditions 

(2.11a) b )  

k 

a+,/ax = a$,lax, $1 = $2 (x = 0 ,  0 < y < hl), 
f We remark that $2 (y. k )  does not satisfy a radiation condition as y 3 co. 
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together with (2.3b). Let U(y) denote the horizontal component of V in the plane 
x = 0; equating both a$,/ax and a$,lax, as given by (2.10), to U(y) a t  x = 0 and 
invoking (2.3b) and the orthogonality of the 1Cr,(y,k), we obtain the Fourier 
coefficients 

- ik.,(A, - B m )  = (2.12) 

and - (2.13) 

Substituting (2.13) into (2.10) and invoking (2.11 b),  we obtain the integral equa- 
tion 

where (2.15) 

We emphasize that (2.14) does not hold in h, < y < h, and that the Green's func- 
tion comprises only the non-propagated modes, corresponding to the positive- 
real values of k determined by (2.6). 

Our problem now can be posed in the following way: supposing the amplitudes 
of the propagated potentials, A,  + B, and A ,  + B,, to be known, determine U(y) 
to satisfy (2.14) and then determine A,-& and A, -B ,  or, equivalently, two 
linear relations among A,, A,, B, and B,, from (2.12). 

We generalize the preceding formulation to three dimensions by replacing (2.4) 

by (2.16) 

where I is a positive-real number that may be regarded as determined either by the 
prescription of an obliquely incident wave (e.g. 1 = K sin 8 for a wave travelling a t  
an angle 8 with respect to the x-axis) or by appropriate boundary conditions in 
planes of constant z (e.g. I =jn/b, j = 0 ,1 ,2 ,  ..., for a channel with walls a t  
x = 0, b).  The admissible values of k are still determined by (2.6) and (2.8), but 
we have the additional complication that the mode determined by k = i~ is a 
travelling wave in x < ( > ) 0 if and only if I < K,(K,). This last condition is satis- 
fied automatically for a wave arriving from the deeper water (for which, by defini- 
tion, 1 = K, sin 0 < K,) by virtue of the inequality K~ > K,; but a wave arriving 
from the shallower water suffers total reflexion if sin 8 > KZ/K1. The situation for 
a channel of finite width, say 0 < z < b, is similarly complicated in that only a 
finite number of the modes can propagate, and this number may be smaller for 
the deeper channel; e.g. if n / ~ ,  < b < T / K ,  only the dominant mode ( I  = 0 )  can 
propagate in the deeper water, but at  least one (I = m/b) of the higher modes can 
propagate in the shallower water. 

Invoking (2.16), we generalize the two-dimensional formulation to three dimen- 
sions by replacing K, by (K:- Z2)* in (2.10) and (2.12) and k by (k2+ 12)& in (2.10), 
(2.13) and (2.15) to obtain 

$(x, y; k, Z )  = exp [ rt (kz+ 1 2 ) : ~  i lx]  $(y, k ) ,  

J O  
(2.17) 

and 
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If I > K,, we must take A ,  = B, = 0 and insert the additional term 

( - 4 + Z2)-+$z(Y, i K 2 )  $ 2 ( r ,  i K 2 )  

in the summation of (3.18). 
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(3.1) 
(3.3) 

and (3.5) 

We infer from (3.4) and (3.5) that A - B and A + B must be linearly related and 
define the scattering matrix S such that - 

K(A- B) = iS(A+ B), (3.6) 

which implies 

Similarly, the unknown velocity U ( y )  must be linear in A + B 7  regarded as a 
description of the excitation; accordingly, we define the normalized velocity u 

(3.8) 
such that 

Substituting (3.8) into (3.5) and invoking the linear independence of A,+ B, 

B = TA, T = (~+ iS) - l (~ - i iS ) .  (3.7) 

U(Y) = (A+B)u(y),  U(Y) = {Ul(Y), UZ<Y)>. 

and A,+ B,, we obtain the uncoupled integral equations 

for the determination of u(y). Substituting (3.8) into (3.4) and invoking (3.6), we 
obtain 

s,, = X m ( r ) U n ( 7 ) d r  (m,n = h 2 ) .  (3.10) 

We now have reduced our problem to the solution of the integral equations 
(3.9) and the subsequent determination of the scattering matrix from (3.10). We 
remark that u and S are real, even though A, B and T are generally complex. We 
could transform (3.4) and (3.5) to an infinite set of linear algebraic equations with 
complex coefficients by expanding U(y) in the $,(y, k), which form a complete 
set of orthonormal functions in the interval y = (0, h,); similarly, we could trans- 
form (3.9) to two, uncoupled, infinite sets of linear algebraic equations with real 
coefficients by expanding both ul(y) and uz(y )  in the $,(y, k). The former pro- 

r 
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cedure was adopted by Newman (1965a). We rest content with the more direct 
construction of approximate solutions. 

The complex reflexion and transmission coefficients for the step are comprised 
by T after appropriate normalization (in which respect, we recall the factor of 
sgnx in (2.10)). For example, the prescription A = (0,I) implies the reflexion 
coefficient B, and the (velocity-potential) transmission coefficient - B,, and 
conversely for A = { 1 , O ) .  The free-surface displacements are given by (for normal 
incidence) 

( 3 . 1 1 ~ )  

(3.11b) 

so that the transmission coefficient for the free-surface displacement is 
- B 1 ~ , ( 0 ) / ~ , ( O ) .  This last factor applies also for oblique incidence, provided that 

rnL(x ,  t )  = Re [( - icr/g) $h(x, 0) e-iut] 

(cr/g) x,(o) Sgn x Im [Am e-i(ut+Kmlzl) + B m e - i ( u i - ~ m l ~ l ) ] ,  

1 < K2. 

4. Plane-wave approximation 
Lamb (1932, 0 176) obtained long-wave approximations to the reflexion and 

transmission coefficients for a step by assuming (a) plane waves, and (6) shallow- 
water theory, after which considerations of continuity yield the required rela- 
tions. [Bartholomeusz (1958) has shown that (a )  and (b) are consistent in the sense 
that (b )  implies (a) as Khl,,+ 0.1 Assumption (a)  implies the neglect of the non- 
propagated modes, $.,(y, k) for k real, or, equivalently, G = 0 in the preceding 
formulation. We generalize Lamb's results by invoking this approximation for 
unrestricted Kh,, ,. 

Referring to the discussion following (3. lo), we infer that the neglect of $,(y, k) 
for all real k implies the truncated expansion 

U(Y) = CXl(Y). (4.1) 

Substituting (4.1) into (3.4), we place the result in the form 

where 

K(A - B) = iC(1, AN), (4.2) 

( 4 . 3 4  

= ~ K K , ( K ~ ,  - K!)-, (Rh, + sinh2 K, h,)-l 

x (Kh,+sinh2K,h,)-8sinh [~,(h,-  h,)]. (4.3b) 

Anticipating the simplification of T, we choose 

h = [ ( K ~ - Z z ) / ( K ~ - Z 2 ) ] t .  (4.4) 

(A+B)X(Y) = 0 (0 < Y < w* (4.5) 

Setting G = 0 in (3.5), we obtain 

Only the first moment of (4.5), namely (the result of multiplying (4.5) through by 
xl(y) and integrating over y = (0, h,)) 

{l,AiV}(A+B) = 0 (4.6a) 
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is significant within the present approximation. Eliminating C between the two 
components of (4.21, we obtain the complementary moment 

{-hN,l}K(A-B) = 0. (4.6b) 

It is evident that (4.6a, b) do not permit th0 construction of a non-singular 
relation of the type (3.6). Nevertheless, we can construct a relation of the type 
(3.7),  namely 

I I I I 
0 04  0.8 1.2 1.6 2.0 2.4 2.8 

(4.7) 

P 
FIGURE 2. The plane-wave (dashed) and variational approximations (solid) to the reflexion 
and transmission coefficients for an infinite step, as determined from (4.8), (6.12) and (6.13). 

We note the snecial cases 

and 

I 

A = { O , l ) + B =  

A =(l ,O}*B = ~ 

(N2+ 1’ N2+ 1 (4.9) 

corresponding to incident waves from the right and from the left, respectively. 
We identify N 2  as an appropriately normalized impedance ratio for the two 
domains. 
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The reflexion and transmission coefficients given by (4.8) for an infinite step 
are compared with the more accurate approximations of 9 6 (which, in turn, are 
in agreement with Newman's ( 1 9 6 5 ~ )  results) in figure 2 .  The approximation to 
the transmission coefficient is within 5 yo of Newman's result for all wavelengths, 
but the corresponding approximation to the reflexion coefficient is satisfactory 
only for small values of p = K, h, (using the expansions developed in 5 6, we find 
that the approximations of (4.8) give the correct coefficients of Po and ~3 asp-. 0) .  
We emphasize that the plane-wave approximation cannot give the phase shifts 
of the transmitted and reflected waves. 

5. Variational formulation 

integrating over y = (0, hl), and comparing the result to (3.10), we obtain 
We now construct variational integrals for the A C ~ ~ ~ .  Multiplying (3.9) by u,(y), 

Combining (5.1) and (3.10), we obtain 

We remark that (5.2) (a) is invariant under a scale transformation of u(y), 
( b )  is stationary with respect to first-order variations of u about the true solution 
to the integral equation (3.9), and (c) implies the reciprocity relation 

8 2 1  = 4 2  (5.3) 

by virtue of the symmetry of G(y, 7). 
We could expand u in the Pl(y, k) and then determine the coefficients in the 

expansion by a systematic invocation of the variational principle ( b )  above. The 
resulting algebraic equations would be equivalent to those obtained through the 
direct solution of (3.9), as suggested in the discussion following (3.10). The power 
of the variational principle, however, lies primarily in direct approximations. 
The simplest rational approximation appears to be that of (4.1) or, equivalently, 

Substituting (5.4) into (5.2) and invoking the orthogonality of xl(y) with respect 
to the remaining k1(y, k ) ,  we place the results in the form 

( 5 - 5 )  

u,,(.Y) = CraXl(Y) (m = 1,2)*  (5.4) 

Sll = Sl2/m = 822/ (hN)2  E (K: - b 2 )  h / x ,  

( 5 . 6 ~ )  

(5 .6b)  

= 4K2(~:--b2)*(~h1+sinh2~1h1)-1~ k2(k2+Z2)-h(~:+k2)--2 
k 

x (Kk,  - sin2 kk2)-l sin2 [k(h2 - hl)], ( 5 . 6 ~ )  
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where AN is given by (4.3), and the summation is over the positive-real values of 
k obtained by setting h = h, in (2.6). 

We remark that (5.5) implies 

lS?i,ml = S l l S 2 2 - - f l ? 2  = 0, (5.7) 

in consequence of which (3.6) is singular, just as in the plane-wave approximation 
of the preceding section (indeed, (5.4) et seq. represent a variational improvement 
of the plane-wave approximation). It remains true that (3.7) is non-singular. 
Substituting (5.5) into (3.7), we obtain 

1 N2- 1-ix 
(5-8) 

We observe that all effectsof the higher modes on T are incorporatedin the para- 
meter X and that (5.8) reduces to the plane-wave approximation (4.7) for S = 0. 

6. Infinite step 
We consider further the special case h, = coin order to compare our variational 

approximation with Newman’s (1965 a )  more accurate results. Recalling that 
h, = co implies K~ = K ,  we introduce the dimensionless parameters 

and rewrite (2.8) and (4.4) in the forms 
a = Kh,, p = K l h l ,  y = Zh, =- usin0 = psing5, (6-1) 

u = Ptanhp (6.20,) 

= p2[1 - +p2+ o(p4)l (p+ 0) ( 6 . 2 b )  

N P[1-2e-21+O(e-41)] (p-foo), ( 6 . 2 ~ )  

and = Ha2 - y”)I(PZ - r2)P ( 6 . 3 ~ )  

= (tanhP)B(l +sech2ptan28)-f. (6.3b) 

We also find it expedient t o  regard N and X as functions o fp  and 0 with a! and y 
(or $) given by (6.1). 

Substituting ( 2 . 7 )  and (2 .9a ,  b )  into ( 4 . 3 ~ ~ )  and (5.6b) and replacing the sum- 
mation in (5.6h) by integration over u = kg = (0, co), we obtain 

N ( p , O )  = N ( P , o )  (1+sech2ptan28)), (6.4) 
N(P,  0) = e-a(P + 4 sinh 2p)-* sinh 2 p  (6.50,) 

(6.5b) 

( 6 . 5 ~ )  

(6.6) 
O0 (a: cos u + u sin u)2u2du 
- 

(a!2+u2) ( /32++2)2 (y2+~2)~’  
and 

It does not appear possible to express the integral of (6.6) in finite terms of 
tabulated functions if y f 0. For y = 0 ,  we expand (a2 + u2)-l (/I2 + u,)-~ in partial 
fractions to obtain 

X(p, 0 )  = n-1{Ei(2P)-Ei( -2p)-N2[Ei(2a) +gezasech2P]) (6.7a) 

= ( 2 / n ) p [ ~ - p 2 ( 1 ; - ~ 5 8 )  +o(p41;)1 (6.7b) - (4 /n )  e-,P [ 1 + O( 1/p2)], ( 6 . 7 ~ )  
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where 

and 

U 

Ei(u) = f v-leedv 
--03 

L = 0*230+210g(l/p). 

Theresults (6.2a), (6.4a) and (6.7a), for a, Nand X, are plotted in figure 3. 

CI 

0 0.04 0.1 0 2  0.4 0 6  08 1.0 1.2 1.4 16 1.8 
I I  I I I 1 I I I I I 

1.0 - 

I I 

0 0 2  0.4 0 6  0 8  1.0 1.2 1.4 1.6 1.8 

P 
FIGURE 3. The results for N and x’, as determined from (6.2), (6.5) and (6.7).  

For y + 0 ,  we consider only the limiting cases a -+ 0 and a + 00. Considering 
first a+P2+0, we separate (6.6) into two integrals over u = (O,p), where we 
approximate a cos u + u sin u by a + u2, and u = (p, a), where we approximate 
(r2 + u2)4 by u, to obtain 

X ( p ,  8)  = ( 2 p / ~ )  [L + log ( 2  cosec 8) - see 8 log (cot +3)] [ 1 + 0(p2)]. (6.10) 

For a-+p+m, we proceed according to 

(6.11 b )  

= (4/n)e-2P[sec8-tan2810g(cot &8)+0(1/,82)], (6.11 c )  

where (6.11 b )  follows from (6.11 a )  after the change of variable u = pv and the 
neglect of the oscillating portion of the integrand. We observe that the bracketed 
term in (6.10) decreases monotonically from 

2 log (1/p) + 0.230 to 

as 0 increases from 0 to 477, whereas the bracketed term in (6.11 c )  decreases 
monotonically from 1 to 0. 

We test the approximation of 3 5 by calculating the reflexion and transmission 
coefEcients for a surface wave normally incident from deep water. Calculating 

3 log (l/p) - 0.077 
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B = T(O,1> with the aid of (5.8) and renormalizing the transmission coefficient 
in accordance with the last paragraph of § 3, we obtain 

( 6.1 2 a) 

(6.12 c) 

(6.13 a) 

N 1 + [ 1 - 2 a + ( 2 i / 7 ~ ) ] e - ~ ~ + O ( a ~ e - ~ ~ ) ,  ( 6 . 1 3 ~ )  

where a = /3 within the approximations of (6.12 c) and (6.134. We observe that 
R, = IRI eiaR1 and T, = ITl\ eisr inNewman’s (1965a) paper and that (6.12b) and 
(6.136) are in agreement with, although carried to higher order than, Newman’s 
(6.5) and (6.6) after correction of what appears to be a typographical error (n 
should be replaced by n2 in his (6.5)). 

Themagnitudes IRI and IT,\, asdetermined by ( 6 . 1 2 ~ )  and (6.13a), are plotted 
in figure 2. These magnitudes, and also the corresponding phase angles SR, and 
ST,, agree with Newman’s results within the accuracy with which his graphs can 
be read. 

We remark that (6.12) and (6.13) reduce to the plane-wave approximations 
implied by (4.8) if we set X = 0 in ( 6 . 1 2 ~ )  and ( 6 . 1 3 ~ ) ~  L = 0 in (6.12b) and 
(6.13b), and i = 0 in ( 6 . 1 2 ~ )  and (6 .13~) .  

The generalizations of (6.12) and (6.13) for a wave obliquely incident from deep 
water are 

(6.14 a) 

,., -e-2a {tan2 8+ (2i/n) [see 8- tan2810g (cot fro)] + O( l/a2)} (6.14b) 

and TI = 2 - 4 / 3 ~ e c 8 + 2 i X + O ( P ~ )  (6.15 a) 

1+{1-2a+(2i /r )  [sec8-tan2810g(cot$8)]+O(l/a2)}e-2a, (6.15b) 

where X in (6.14a) and ( 6 . 1 5 ~ )  is given by (6.10). The 8 dependence of X is less 
important than that of N for intermediate values of /3 (see remarks following 
(6.11)), which suggests that good approximations to R, and T, for oblique in- 
cidence and intermediate values of /3 can be obtained simply by multiplying N2 
by (1+sech2/3tan2B)~ in ( 6 . 1 2 ~ )  and ( 6 . 1 3 ~ )  [cf. (6.4); AX is independent of 81. 

Summing up, the variational approximations of (5.5) and (6.6) give at  least the 
first three terms in the expansions of Newman’s results about a = 0, give the 
same limiting values as a+ m, and are in close numerical agreement for all wave- 
lengths. Recalling that Newman’s calculations involved the numerical solution 
of between 10 and 80 simultaneous equations, we conclude that the variational 
approximation given by (5.4)-(5.6) is both powerful and economical. 

R, = (1 -N2- iX) / (1+N2- iX)  

N - (2i/77) e-Za + O(a2 e-4a) 

= 1 - 4/3 + 8p2+ 4P3[(4/n2) L2 - 31 - ( 8 i / r )  P2( 1 - 4/3) L + O(P4L) (6.12b) 

and T, = 2hN(a + sinh2/3)-z1 (1 + N2 - is)-, cosh /3 

= 2 - 4/3 + p2[?- (8/77’) L2] + (4;/3/n) (1 - 4p)L + O(P3L) (6.136) 

R, = 1 - 4/3 sec 8 + 8p2 see2 8 - 4ipX sec 6 + 

7. End correction for shelf 
We illustrate the flexibility of the scattering-matrix formulation by supposing 

that the shallower water in x < 0 terminates at  a vertical cliff, say x = - d, and 
calculating the effective length that must be added to d to account for the phase 
shift associated with the discontinuity at x = 0. 



7 66 John W.  Miles 

Invoking the boundary condition 

& = 0 (x = -a), (7.1) 

we infer from the three-dimensional generalization of (2.10) that A, and B, must 

A - 1C eU B - 1C e-i8 be of the form 

where Cl is real, and 
1 - z 1  3 1 - 2 1  Y 

6 = (K?-  12)*d. 

Choosing A ,  = 1, we also define 

= B27 = -c1x1(0)/x2(0). (7.4) 

Substituting (7.2) and (7.4) into (3.6) and invoking the approximation (5 .5 ) ,  we 
obtain 

Y (7.6) 

where r = cot-l [(X - cot S)/N2] (7.7) 

and &! = e2i7 

is the phase angle of T. 

r = (n + +)n), which implies 
We define resonance as that condition fcr which r = +n- (or, more generally, 

>+tan-lX = +n+nn (n = 0,1,2, ...), (7.8) 

from which we infer that the effect of the non-planar modes is equivalent to an 
incremental shelf length of 

We note that the extrema of IT I correspond to 

d, = (K?-  P)-* tan-1X. (7.9) 

6 + Q tan-l (l-ky-x2) =in-+nn ( n = 0 , 1 , 2  ,... 1, (7.10) 

rather than to (7.8). 
The most interesting case is h, = co and p-. 0, for which (7.5) reduces to 

T = ~ [ C O S  6 - (S + 248 sec 8) sin 61-1 [ 1 + O(pz)] ,  (7.11) 

where X is given by (6.10) and is O(p).  The criteria of (7.8) and (7.10) now are 
equivalent within 1 + O(p2) and imply 

and 
ITl,,,sx = p-lcosB a t  S+X = + n - + ~ ,  (7.12) 

dl/hl = X / p  = (2/n) [0-230+log(2/,82sin8) - sec@log(cot&)) +O(pz) ] .  (7.13) 

[Dr Newman has pointed out that the results of this last section are related to 
his own results for a 'long symmetrical obstacle' (Newman 19653). Indeed, sym- 
metry implies that our problem is identical with that of a rectangular step of 
length 2d subjected to identical incident waves from x = 

The ratio d,/h, for h, = co and 8 = 0 is plotted in figure 4. We emphasize that, 
although dl/hl is logarithmically infinite, d, + 0 in the limit p+ 0; accordingly, 

co.] 
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the effect of trapped modes on the resonant width of a shallow shelf may be 
negligible in many applications. 

This research was partially supported by the Office of Naval Research under 
Contract Nonr 2216(29), and by the National Science Foundation, under 
Contract NSF-GP-2414. 

2.4 

2 0  

0.4 

P 
FIGURE 4. The incremental shelf length d, for h, = co and 0 = 0;  d, is equivalent, in a 

plane-wave calculation of resonance, to the effects of the non-planar modes. 
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